什么是IC封裝
IC是集成電路的意思,俗稱芯片.封裝就是用環氧塑封料(一種塑封)或陶瓷等材料將半導體廠商(比較牛的如臺灣的臺積電、聯電,大陸的中芯國際等)加工出來的IC裸芯片用特定的外形包起來,然后打彎成相應形狀的一個過程.
IC的封裝是指什么
IC就是集成電路,封裝就是指用環氧塑封料(應用最普及)將裸芯片包起來,使之形成一個有固定引線腳數的IC芯片.
芯片封裝的主要步驟是什么啊?
板上芯片(Chip On Board, COB)工藝過程首先是在基底表面用導熱環氧樹脂(一般用摻銀顆粒的環氧樹脂)覆蓋硅片安放點,然后將硅片直接安放在基底表面,熱處理至硅片牢固地固定在基底為止,隨后再用絲焊的方法在硅片和基底之間直接建立電氣連接。
裸芯片技術主要有兩種形式:一種是COB技術,另一種是倒裝片技術(Flip Chip)。板上芯片封裝(COB),半導體芯片交接貼裝在印刷線路板上,芯片與基板的電氣連接用引線縫合方法實現,芯片與基板的電氣連接用引線縫合方法實現,并用樹脂覆蓋以確保可靠性。雖然COB是最簡單的裸芯片貼裝技術,但它的封裝密度遠不如TAB和倒片焊技術。
COB主要的焊接方法:
(1)熱壓焊
利用加熱和加壓力使金屬絲與焊區壓焊在一起。其原理是通過加熱和加壓力,使焊區(如AI)發生塑性形變同時破壞壓焊界面上的氧化層,從而使原子間產生吸引力達到“鍵合”的目的,此外,兩金屬界面不平整加熱加壓時可使上下的金屬相互鑲嵌。此技術一般用為玻璃板上芯片COG。
(2)超聲焊
超聲焊是利用超聲波發生器產生的能量,通過換能器在超高頻的磁場感應下,迅速伸縮產生彈性振動,使劈刀相應振動,同時在劈刀上施加一定的壓力,于是劈刀在這兩種力的共同作用下,帶動AI絲在被焊區的金屬化層如(AI膜)表面迅速摩擦,使AI絲和AI膜表面產生塑性變形,這種形變也破壞了AI層界面的氧化層,使兩個純凈的金屬表面緊密接觸達到原子間的結合,從而形成焊接。主要焊接材料為鋁線焊頭,一般為楔形。
(3)金絲焊
球焊在引線鍵合中是最具代表性的焊接技術,因為現在的半導體封裝二、三極管封裝都采用AU線球焊。而且它操作方便、靈活、焊點牢固(直徑為25UM的AU絲的焊接強度一般為0.07~0.09N/點),又無方向性,焊接速度可高達15點/秒以上。金絲焊也叫熱(壓)(超)聲焊主要鍵合材料為金(AU)線焊頭為球形故為球焊。
COB封裝流程
第一步:擴晶。采用擴張機將廠商提供的整張LED晶片薄膜均勻擴張,使附著在薄膜表面緊密排列的LED晶粒拉開,便于刺晶。
第二步:背膠。將擴好晶的擴晶環放在已刮好銀漿層的背膠機面上,背上銀漿。點銀漿。適用于散裝LED芯片。采用點膠機將適量的銀漿點在PCB印刷線路板上。
第三步:將備好銀漿的擴晶環放入刺晶架中,由操作員在顯微鏡下將LED晶片用刺晶筆刺在PCB印刷線路板上。
第四步:將刺好晶的PCB印刷線路板放入熱循環烘箱中恒溫靜置一段時間,待銀漿固化后取出(不可久置,不然LED芯片鍍層會烤黃,即氧化,給邦定造成困難)。如果有LED芯片邦定,則需要以上幾個步驟;如果只有IC芯片邦定則取消以上步驟。
第五步:粘芯片。用點膠機在PCB印刷線路板的IC位置上適量的紅膠(或黑膠),再用防靜電設備(真空吸筆或子)將IC裸片正確放在紅膠或黑膠上。
第六步:烘干。將粘好裸片放入熱循環烘箱中放在大平面加熱板上恒溫靜置一段時間,也可以自然固化(時間較長)。
第七步:邦定(打線)。采用鋁絲焊線機將晶片(LED晶粒或IC芯片)與PCB板上對應的焊盤鋁絲進行橋接,即COB的內引線焊接。
第八步:前測。使用專用檢測工具(按不同用途的COB有不同的設備,簡單的就是高精密度穩壓電源)檢測COB板,將不合格的板子重新返修。
第九步:點膠。采用點膠機將調配好的AB膠適量地點到邦定好的LED晶粒上,IC則用黑膠封裝,然后根據客戶要求進行外觀封裝。
第十步:固化。將封好膠的PCB印刷線路板放入熱循環烘箱中恒溫靜置,根據要求可設定不同的烘干時間。
第十一步:后測。將封裝好的PCB印刷線路板再用專用的檢測工具進行電氣性能測試,區分好壞優劣。
與其它封裝技術相比,COB技術價格低廉(僅為同芯片的1/3左右)、節約空間、工藝成熟。但任何新技術在剛出現時都不可能十全十美,COB技術也存在著需要另配焊接機及封裝機、有時速度跟不上以及PCB貼片對環境要求更為嚴格和無法維修等缺點。
某些板上芯片(CoB)的布局可以改善IC信號性能,因為它們去掉了大部分或全部封裝,也就是去掉了大部分或全部寄生器件。然而,伴隨著這些技術,可能存在一些性能問題。在所有這些設計中,由于有引線框架片或BGA標志,襯底可能不會很好地連接到VCC或地。可能存在的問題包括熱膨脹系數(CTE)問題以及不良的襯底連接。
將芯片封裝在一個封裝體內或其表面上是封裝界沿用了多年的一種傳統的封裝技術。如LPCC、TBGA、SOIC和DIPS等都采用這種封裝方法。90年代以來,隨著應用領域的大力驅動,封裝技術不斷取得日新月異的進展。單從封裝技術新名詞的涌現速度就足以說明封裝技術的不斷發展。近幾年在各種期刊和會議錄文章中出現的封裝技術縮略詞更是層出不窮,令人眼花繚亂,應接不暇。
人們對銅引線框架的特性及其相關的工藝技術并不陌生。采用金線與其它合金(如銅等)的引線鍵合技術已接近完美的程度。最近幾年,引線鍵合的節距(交錯節距)不斷減小,已由原來的100μm降至80μm、50μm、35μm,2002年已降至25μm。目前的封裝多采用下列兩種形式:1種是采用封帽的氣密封裝;另一種是采用模壓化合物或液體密封劑的灌封方式,使最終的封裝體能經受住可靠性測試。此外,與PCB的互連采用針式引線,其形狀可分為直接鷗翼形成“J”形。三四年以前,制造產品的最終目的通常是最大限度地延長使用壽命。但如今的情況已大不相同了,消費類產品已達到極為豐富的程度。一旦產品出現故障,人們通常采用的方法是棄舊購新,因為購買新產品的價格甚至比維修還要劃算。這也足以說明,大部分產品的價格已發生了許多變化。
2 倒裝芯片技術的發展
30多年前,“倒裝芯片”問世。當時為其冠名為“C4”,即“可控熔塌芯片互連”技術。該技術首先采用銅,然后在芯片與基板之間制作高鉛焊球。銅或高鉛焊球與基板之間的連接通過易熔焊料來實現。此后不久出現了適用于汽車市場的“封帽上的柔性材料(FOC)”;還有人采用Sn封帽,即蒸發擴展易熔面或E3工藝對C4工藝做了進一步的改進。C4工藝盡管實現起來比較昂貴(包括許可證費用與設備的費用等),但它還是為封裝技術提供了許多性能與成本優勢。與引線鍵合工藝不同的是,倒裝芯片可以批量完成,因此還是比較劃算。
由于新型封裝技術和工藝不斷以驚人的速度涌現,因此完成具有數千個凸點的芯片設計目前已不存在大的技術障礙小封裝技術工程師可以運用新型模擬軟件輕易地完成各種電、熱、機械與數學模擬。此外,以前一些世界知名公司專為內部使用而設計的專用工具目前已得到廣泛應用。為此設計人員完全可以利用這些新工具和新工藝最大限度地提高設計性,最大限度地縮短面市的時間。
無論人們對此抱何種態度,倒裝芯片已經開始了一場工藝和封裝技術革命,而且由于新材料和新工具的不斷涌現使倒裝芯片技術經過這么多年的發展以后仍能處于不斷的變革之中。為了滿足組裝工藝和芯片設計不斷變化的需求,基片技術領域正在開發新的基板技術,模擬和設計軟件也不斷更新升級。因此,如何平衡用最新技術設計產品的愿望與以何種適當款式投放產品之間的矛盾就成為一項必須面對的重大挑戰。
由于受互連網帶寬不斷變化以及下面列舉的一些其它因素的影響,許多設計人員和公司不得不轉向倒裝芯片技術。
其它因素包括:
①減小信號電感——40Gbps(與基板的設計有關);
②降低電源/接地電感;
③提高信號的完整性;
④最佳的熱、電性能和最高的可靠性;
⑤減少封裝的引腳數量;
⑥超出引線鍵合能力,外圍或整個面陣設計的高凸點數量;
⑦當節距接近200μm設計時允許;S片縮小(受焊點限制的芯片);
⑧允許BOAC設計,即在有源電路上進行凸點設計。
然而,由于倒裝芯片工藝的固有特點使采用倒裝芯片工藝制作的封裝并非是全密封的,且還要使用剛性凸點。在這一點上,它與采用引線鍵合將芯片與基板相連接的方法有所不同。許多早期的C4設計都與芯片(熱膨脹系數,即CTE約為2.3-2.8ppm)一起組裝在陶瓷基板(CTE為7ppm)上。這種設計通常需要底部填料以確保芯片與基板的可靠連接。底部填充的主要作用是彌補芯片與基板之間在功率與/或熱循環期間出現的CTE失配,而不起隔離潮濕的作用。CTE失配有可能造成芯片與基板以不同的速度膨脹和收縮,最終會導致芯片的斷裂。
倒裝芯片工藝自問世以來一直在微電子封裝中得到廣泛應用。最近5年由于對提高性能,增加凸點數量和降低成本等方面不斷提出新的要求。為了滿足這些要求,許多知名大公司已對倒裝芯片技術做了許多改進。由于芯片尺寸已經增加,凸點節距已經減小,促進新型基板材料不斷問世,芯片凸點制作工藝和底部填充技術不斷改善,環保型無鉛焊料逐步得到廣泛應用,致使互連的選擇越來越廣泛。
3 新工藝問世
最近幾年由于應用領域不斷對工藝提出新的要求,世界各國,尤其是美國從事封裝技術研究的機構和公司都紛紛推出其新的工藝和技術。這些新的工藝可省去以往那些價格昂貴的基板和工藝步驟,直接在PCB上安裝更小的芯片。這些工藝尤其適用于低成本的消費類產品。此外,最近一些公司還開發出一種采用有機基板的新工藝。這種有機基板的最大優勢在于它的制造成本。它比陶瓷基板工藝的成本要低得多,而設計的線條卻可以達到非常細密的程度。自從有機基板出現以來,為了滿足日益縮小的特征尺寸的要求,許多公司已開發出有機基板專用的工具和工藝技術。
可供選擇的基板材料十分豐富,包括柔性基板(帶狀)、疊層基板(FR-4、FR-5、BTTM等)、組合基板(有機組合薄層或疊層上的薄膜介質材料)、氧化鋁陶瓷、HiTCETM陶瓷、以及具有BCBTM介質層的玻璃基板等,可謂應有盡有。幾年前,如果一個 高速芯片組件所耗的功率較高,凸點在2000個以上,節距為200pm的話,其制造難度與制作成本將會高的難以想像。但就目前的工藝設備與技術能力而言,對同類難度產品的制造與組裝成品率都已達到相當高的水平,且制造成本已趨于合理化。推動這些新工藝發展的驅動力是什么呢?其實,與任何新技術相同,推動其發展的動力仍是為了達到生產與樣品基板的普及性、基板與組裝成本、封裝設計要求與可靠性等因素之間的平衡。
4 成本問題
像其它技術一樣,倒裝芯片技術的制造成本仍然與技術和批量大小密切相關。目前大多數工藝的成本仍然十分高昂,而標準工藝仍受批量生產程度的驅使。此外,可靠性也是需要解決的一個問題。許多公司在進行有機封裝時仍在使用針對氣密封裝的可靠性標準。目前有許多公司正在和JEDEC討論解決這一問題的辦法。近一段時間,各種科技期刊報道了多篇論述這一問題的文章。估計在不遠的將來有望出臺一套專門適用于有機封裝技術的標準。與此同時,供應商與用戶也在不斷努力,為滿足單個用戶的特殊要求提供必要的可靠性。過去,IC封裝通常需要進行下面一系列的可靠性測試。
①在121℃下進行168個小時的相對濕度壓力鍋蒸煮試驗(RH-PCT);
②在150℃下完成1000小時的高溫存儲(HTSL)試驗;
③在85℃下完成1000小時,85%相對濕度溫度-溫度偏壓試驗(RH-THBT);
④在-55℃-+125℃下完成1000個循環。
⑤在130℃下完成超過168小時,85%相對濕度強加速溫濕應力試驗(RH-HSAT)。
封裝與PCB的二級可靠性包括許多項不同的測試。這些測試需要在0℃-100℃下完成300個循環。JEDEC對測試標準和循環的停留時間做了十分詳細的規定。
隨著有機封裝應用領域的不斷擴大,可靠性問題將成為該技術面臨的主要挑戰。其中由潮氣吸收引起的分層,以及由封裝結構的精細程度和電流密度過高引起的電遷移等問題都必須得到更多的關注。聚酰亞胺是吸潮性能最差的材料之一。盡管目前的一層或兩層帶狀生產都采用這種材料,但它與銅的粘接性能較差,因此有機封裝要想取得長足發展必須解決這些問題。
5 失效機理
要充分理解材料在使用過程中出現的失效機理仍需要通過濕氣和腐蝕測試,如PCT和HAST等。不過這些測試是否應該用作鑒定失效的基本條件仍有爭議。這些問題還有待JEDEC和其它機構的進一步商議。除此之外,封裝界還在探討其它的測試手段。一些公司認為,一理了解了失效的機理就可以取消某些測試標準。
然而,一些特殊應用的產品仍要與許多噴氣式飛機部件、醫療部件、衛星、導彈等一起進行溫度循環實驗。在這類情況下仍需要可靠性更高、壽命更長的倒裝芯片封裝。因此必須開發一種適合高速大功耗(5—100W)工作的芯片工藝技術。這類芯片的凸點通常在2000-5000個,節距在200μm或以下。盡管有許多公司正在從事這方面的研究,但誰會成為最大的贏家目前尚不明朗。
迄今為止,每個公司都在制訂各自的工作目標,因此市場上的工藝技術及支撐產品的種類十分繁雜。主要包括CSP、DCA、COB和FCBGA(倒裝
芯片焊球網絡陣列)等。
6 選擇
倒裝芯片的最終結果是一個封裝,但它本身是一種工藝而并非封裝。可以采用各種不同的方法改變工藝以滿足各種不同的應用要求。最基本的步驟包括:制作芯片封裝凸點、切片、將芯片倒裝在基板或載體上、芯片與基板再流焊、在芯片與基板之間進行底部填充、老化、制作BGA焊球、將最終的封裝組裝到另一塊印制電路板(通常為FR-4)上。
是否選擇倒裝芯片技術作為最終的封裝選擇主要取決于基板的選擇。通常基板必須符合下列要求:
①芯片的電學要求(電感、電容、電阻、傳播延遲、EMI等);
②根據供應商提供的基板設計特點(線條、間隔、通孔尺寸、通孔直徑等)進行設計;
③成本要求;
④焊球或焊膏(含鉛或無鉛)的組份;
⑤熱性能要求;
⑥尺寸要求;
⑦應用對封裝可靠性的要求;
⑧應用對PCB或二極可靠性的要求。
7 結論
綜上所述,在設計或制造中遇到問題時應常與組裝伙伴共同商討對策。因為他們所擁有的模擬軟件可以對任何電參數和熱特性進行模擬,可最終選出最佳的封裝手段;他們的建模能力可滿足新型設計的高速要求;他們擁有豐富的經驗和可靠的數據,完全可根據設計方案完成產品的生產和制作;他們還擁有對最終產品的測試能力,還可以就材料的選擇、熱選擇、焊料合金和組裝結構提出切實可行的建議。
芯片封裝技術知多少
我們經常聽說某某芯片采用什么什么的封裝方式,在我們的電腦中,存在著各種各樣不同處理芯片,那么,它們又是是采用何種封裝形式呢?并且這些封裝形式又有什么樣的技術特點以及優越性呢?那么就請看看下面的這篇文章,將為你介紹個中芯片封裝形式的特點和優點。 一、DIP雙列直插式封裝 DIP(DualIn-line Package)是指采用雙列直插形式封裝的集成電路芯片,絕大多數中小規模集成電路(IC)均采用這種封裝形式,其引腳數一般不超過100個。采用DIP封裝的CPU芯片有兩排引腳,需要插入到具有DIP結構的芯片插座上。當然,也可以直接插在有相同焊孔數和幾何排列的電路板上進行焊接。DIP封裝的芯片在從芯片插座上插拔時應特別小心,以免損壞引腳。 DIP封裝具有以下特點: 1.適合在PCB(印刷電路板)上穿孔焊接,操作方便。 2.芯片面積與封裝面積之間的比值較大,故體積也較大。 Intel系列CPU中8088就采用這種封裝形式,緩存(Cache)和早期的內存芯片也是這種封裝形式。 二、QFP塑料方型扁平式封裝和PFP塑料扁平組件式封裝 QFP(Plastic Quad Flat Package)封裝的芯片引腳之間距離很小,管腳很細,一般大規模或超大型集成電路都采用這種封裝形式,其引腳數一般在100個以上。用這種形式封裝的芯片必須采用SMD(表面安裝設備技術)將芯片與主板焊接起來。采用SMD安裝的芯片不必在主板上打孔,一般在主板表面上有設計好的相應管腳的焊點。將芯片各腳對準相應的焊點,即可實現與主板的焊接。用這種方法焊上去的芯片,如果不用專用工具是很難拆卸下來的。 PFP(Plastic Flat Package)方式封裝的芯片與QFP方式基本相同。唯一的區別是QFP一般為正方形,而PFP既可以是正方形,也可以是長方形。 QFP/PFP封裝具有以下特點: 1.適用于SMD表面安裝技術在PCB電路板上安裝布線。 2.適合高頻使用。 3.操作方便,可靠性高。 4.芯片面積與封裝面積之間的比值較小。 Intel系列CPU中80286、80386和某些486主板采用這種封裝形式。 三、PGA插針網格陣列封裝 PGA(Pin Grid Array Package)芯片封裝形式在芯片的內外有多個方陣形的插針,每個方陣形插針沿芯片的四周間隔一定距離排列。根據引腳數目的多少,可以圍成2-5圈。安裝時,將芯片插入專門的PGA插座。為使CPU能夠更方便地安裝和拆卸,從486芯片開始,出現一種名為ZIF的CPU插座,專門用來滿足PGA封裝的CPU在安裝和拆卸上的要求。 ZIF(Zero Insertion Force Socket)是指零插拔力的插座。把這種插座上的扳手輕輕抬起,CPU就可很容易、輕松地插入插座中。然后將扳手壓回原處,利用插座本身的特殊結構生成的擠壓力,將CPU的引腳與插座牢牢地接觸,絕對不存在接觸不良的問題。而拆卸CPU芯片只需將插座的扳手輕輕抬起,則壓力解除,CPU芯片即可輕松取出。 PGA封裝具有以下特點: 1.插拔操作更方便,可靠性高。 2.可適應更高的頻率。 Intel系列CPU中,80486和Pentium、Pentium Pro均采用這種封裝形式。 四、BGA球柵陣列封裝 隨著集成電路技術的發展,對集成電路的封裝要求更加嚴格。這是因為封裝技術關系到產品的功能性,當IC的頻率超過100MHz時,傳統封裝方式可能會產生所謂的“CrossTalk”現象,而且當IC的管腳數大于208 Pin時,傳統的封裝方式有其困難度。因此,除使用QFP封裝方式外,現今大多數的高腳數芯片(如圖形芯片與芯片組等)皆轉而使用BGA(Ball Grid Array Package)封裝技術。BGA一出現便成為CPU、主板上南/北橋芯片等高密度、高性能、多引腳封裝的最佳選擇。 BGA封裝技術又可詳分為五大類: 1.PBGA(Plasric BGA)基板:一般為2-4層有機材料構成的多層板。Intel系列CPU中,Pentium II、III、IV處理器均采用這種封裝形式。 2.CBGA(CeramicBGA)基板:即陶瓷基板,芯片與基板間的電氣連接通常采用倒裝芯片(FlipChip,簡稱FC)的安裝方式。Intel系列CPU中,Pentium I、II、Pentium Pro處理器均采用過這種封裝形式。 3.FCBGA(FilpChipBGA)基板:硬質多層基板。 4.TBGA(TapeBGA)基板:基板為帶狀軟質的1-2層PCB電路板。 5.CDPBGA(Carity Down PBGA)基板:指封裝中央有方型低陷的芯片區(又稱空腔區)。 BGA封裝具有以下特點: 1.I/O引腳數雖然增多,但引腳之間的距離遠大于QFP封裝方式,提高了成品率。 2.雖然BGA的功耗增加,但由于采用的是可控塌陷芯片法焊接,從而可以改善電熱性能。 3.信號傳輸延遲小,適應頻率大大提高。 4.組裝可用共面焊接,可靠性大大提高。 BGA封裝方式經過十多年的發展已經進入實用化階段。1987年,日本西鐵城(Citizen)公司開始著手研制塑封球柵面陣列封裝的芯片(即BGA)。而后,摩托羅拉、康柏等公司也隨即加入到開發BGA的行列。1993年,摩托羅拉率先將BGA應用于移動電話。同年,康柏公司也在工作站、PC電腦上加以應用。直到五六年前,Intel公司在電腦CPU中(即奔騰II、奔騰III、奔騰IV等),以及芯片組(如i850)中開始使用BGA,這對BGA應用領域擴展發揮了推波助瀾的作用。目前,BGA已成為極其熱門的IC封裝技術,其全球市場規模在2000年為12億塊,預計2005年市場需求將比2000年有70%以上幅度的增長。 五、CSP芯片尺寸封裝 隨著全球電子產品個性化、輕巧化的需求蔚為風潮,封裝技術已進步到CSP(Chip Size Package)。它減小了芯片封裝外形的尺寸,做到裸芯片尺寸有多大,封裝尺寸就有多大。即封裝后的IC尺寸邊長不大于芯片的1.2倍,IC面積只比晶粒(Die)大不超過1.4倍。 CSP封裝又可分為四類: 1.Lead Frame Type(傳統導線架形式),代表廠商有富士通、日立、Rohm、高士達(Goldstar)等等。 2.Rigid Interposer Type(硬質內插板型),代表廠商有摩托羅拉、索尼、東芝、松下等等。 3.Flexible Interposer Type(軟質內插板型),其中最有名的是Tessera公司的microBGA,CTS的sim-BGA也采用相同的原理。其他代表廠商包括通用電氣(GE)和NEC。 4.Wafer Level Package(晶圓尺寸封裝):有別于傳統的單一芯片封裝方式,WLCSP是將整片晶圓切割為一顆顆的單一芯片,它號稱是封裝技術的未來主流,已投入研發的廠商包括FCT、Aptos、卡西歐、EPIC、富士通、三菱電子等。 CSP封裝具有以下特點: 1.滿足了芯片I/O引腳不斷增加的需要。 2.芯片面積與封裝面積之間的比值很小。 3.極大地縮短延遲時間。 CSP封裝適用于腳數少的IC,如內存條和便攜電子產品。未來則將大量應用在信息家電(IA)、數字電視(DTV)、電子書(E-Book)、無線網絡WLAN/GigabitEthemet、ADSL/手機芯片、藍芽(Bluetooth)等新興產品中。 六、MCM多芯片模塊 為解決單一芯片集成度低和功能不夠完善的問題,把多個高集成度、高性能、高可靠性的芯片,在高密度多層互聯基板上用SMD技術組成多種多樣的電子模塊系統,從而出現MCM(Multi Chip Model)多芯片模塊系統。 MCM具有以下特點: 1.封裝延遲時間縮小,易于實現模塊高速化。 2.縮小整機/模塊的封裝尺寸和重量。 3.系統可靠性大大提高。 結束語 總之,由于CPU和其他超大型集成電路在不斷發展,集成電路的封裝形式也不斷作出相應的調整變化,而封裝形式的進步又將反過來促進芯片技術向前發展。
半導體封裝,半導體封裝是什么意思
半導體封裝簡介:
半導體生產流程由晶圓制造、晶圓測試、芯片封裝和封裝后測試組成。半導體封裝是指將通過測試的晶圓按照產品型號及功能需求加工得到獨立芯片的過程。封裝過程為:來自晶圓前道工藝的晶圓通過劃片工藝后,被切割為小的晶片(Die),然后將切割好的晶片用膠水貼裝到相應的基板(引線框架)架的小島上,再利用超細的金屬(金、錫、銅、鋁)導線或者導電性樹脂將晶片的接合焊盤(Bond Pad)連接到基板的相應引腳(Lead),并構成所要求的電路;然后再對獨立的晶片用塑料外殼加以封裝保護,塑封之后,還要進行一系列操作,如后固化(Post Mold Cure)、切筋和成型(Trim&Form)、電鍍(Plating)以及打印等工藝。封裝完成后進行成品測試,通常經過入檢(Incoming)、測試(Test)和包裝(Packing)等工序,最后入庫出貨。典型的封裝工藝流程為:劃片 裝片 鍵合 塑封 去飛邊 電鍍 打印 切筋和成型 外觀檢查 成品測試 包裝出貨。
1 半導體器件封裝概述
電子產品是由半導體器件(集成電路和分立器件)、印刷線路板、導線、整機框架、外殼及顯示等部分組成,其中集成電路是用來處理和控制信號,分立器件通常是信號放大,印刷線路板和導線是用來連接信號,整機框架外殼是起支撐和保護作用,顯示部分是作為與人溝通的接口。所以說半導體器件是電子產品的主要和重要組成部分,在電子工業有“工業之米”的美稱。
我國在上世紀60年代自行研制和生產了第一臺計算機,其占用面積大約為100 m2以上,現在的便攜式計算機只有書包大小,而將來的計算機可能只與鋼筆一樣大小或更小。計算機體積的這種迅速縮小而其功能越來越強大就是半導體科技發展的一個很好的佐證,其功勞主要歸結于:(1)半導體芯片集成度的大幅度提高和晶圓制造(Wafer fabrication)中光刻精度的提高,使得芯片的功能日益強大而尺寸反而更小;(2)半導體封裝技術的提高從而大大地提高了印刷線路板上集成電路的密集度,使得電子產品的體積大幅度地降低。
半導體組裝技術(Assembly technology)的提高主要體現在它的封裝型式(Package)不斷發展。通常所指的組裝(Assembly)可定義為:利用膜技術及微細連接技術將半導體芯片(Chip)和框架(Leadframe)或基板(Sulbstrate)或塑料薄片(Film)或印刷線路板中的導體部分連接以便引出接線引腳,并通過可塑性絕緣介質灌封固定,構成整體立體結構的工藝技術。它具有電路連接,物理支撐和保護,外場屏蔽,應力緩沖,散熱,尺寸過度和標準化的作用。從三極管時代的插入式封裝以及20世紀80年代的表面貼裝式封裝,發展到現在的模塊封裝,系統封裝等等,前人已經研究出很多封裝形式,每一種新封裝形式都有可能要用到新材料,新工藝或新設備。
驅動半導體封裝形式不斷發展的動力是其價格和性能。電子市場的最終客戶可分為3類:家庭用戶、工業用戶和國家用戶。家庭用戶最大的特點是價格便宜而性能要求不高;國家用戶要求高性能而價格通常是普通用戶的幾十倍甚至幾千倍,主要用在軍事和航天等方面;工業用戶通常是價格和性能都介于以上兩者之間。低價格要求在原有的基礎上降低成本,這樣材料用得越少越好,一次性產出越大越好。高性能要求產品壽命長,能耐高低溫及高濕度等惡劣環境。半導體生產廠家時時刻刻都想方設法降低成本和提高性能,當然也有其它的因素如環保要求和專利問題迫使他們改變封裝型式。
2 封裝的作用
封裝(Package)對于芯片來說是必須的,也是至關重要的。封裝也可以說是指安裝半導體集成電路芯片用的外殼,它不僅起著保護芯片和增強導熱性能的作用,而且還是溝通芯片內部世界與外部電路的橋梁和規格通用功能的作用。封裝的主要作用有:
(1)物理保護。因為芯片必須與外界隔離,以防止空氣中的雜質對芯片電路的腐蝕而造成電氣性能下降,保護芯片表面以及連接引線等,使相當柔嫩的芯片在電氣或熱物理等方面免受外力損害及外部環境的影響;同時通過封裝使芯片的熱膨脹系數與框架或基板的熱膨脹系數相匹配,這樣就能緩解由于熱等外部環境的變化而產生的應力以及由于芯片發熱而產生的應力,從而可防止芯片損壞失效。基于散熱的要求,封裝越薄越好,當芯片功耗大于2W時,在封裝上需要增加散熱片或熱沉片,以增強其散熱冷卻功能;5~1OW時必須采取強制冷卻手段。另一方面,封裝后的芯片也更便于安裝和運輸。
(2)電氣連接。封裝的尺寸調整(間距變換)功能可由芯片的極細引線間距,調整到實裝基板的尺寸間距,從而便于實裝操作。例如從以亞微米(目前已達到0.1 3μm以下)為特征尺寸的芯片,到以10μm為單位的芯片焊點,再到以100μm為單位的外部引腳,最后劍以毫米為單位的印刷電路板,都是通過封裝米實現的。封裝在這里起著由小到大、由難到易、由復雜到簡單的變換作用,從而可使操作費用及材料費用降低,而且能提高工作效率和可靠性,特別是通過實現布線長度和阻抗配比盡可能地降低連接電阻,寄生電容和電感來保證正確的信號波形和傳輸速度。
(3)標準規格化。規格通用功能是指封裝的尺寸、形狀、引腳數量、間距、長度等有標準規格,既便于加工,又便于與印刷電路板相配合,相關的生產線及生產設備都具有通用性。這對于封裝用戶、電路板廠家、半導體廠家都很方便,而且便于標準化。相比之下,裸芯片實裝及倒裝目前尚不具備這方面的優勢。由于組裝技術的好壞還直接影響到芯片自身性能的發揮和與之連接的印刷電路板(PCB)的設計和制造,對于很多集成電路產品而言,組裝技術都是非常關鍵的一環。
3 封裝的分類
半導體(包括集成電路和分立器件)其芯片的封裝已經歷了好幾代的變遷,從DIP、SOP、QFP、PGA、BGA到MCP再到SIP,技術指標一代比一代先進,包括芯片面積與封裝面積之比越來越接近于1,適用頻率越來越高,耐溫性能越來越好,引腳數增多,引腳間距減小,重量減小,可靠性提高,使用更加方便等等。封裝(Package)可謂種類繁多,而且每一種封裝都有其獨特的地方,即它的優點和不足之處,當然其所用的封裝材料、封裝設備、封裝技術根據其需要而有所不同。
集成電路芯片的封裝形式有哪些
1 封裝
集成電路的封裝形式是安裝半導體集成電路芯片用的外殼。它不僅起著安裝、固定、密封、保護芯片及增強電熱性能等方面的作用,同時還通過芯片上的接點用導線連接到封裝外殼的引腳上,這些引腳又通過印制電路板上的導線與其他器件相連接,從而實現內部芯片與外部電路的連接。封裝技術的好壞又直接影響到芯片自身性能的發揮和與之連接的印制電路板(PCB)的設計和制造。因此封裝形式是至關重要的。
集成電路的封裝形式有多種。按照封裝外形分,主要有直插式封裝、貼片式封裝、BOA封裝、CSP封裝等類型。按照封裝材料分,主要有金屬封裝、塑料封裝和陶瓷封裝等。常見集成電路的封裝形式如表1所示。
表1 常見集成電路的封裝形
2 集成電路的引腳識別
集成電路通常有多個引腳,每一個引腳都有其相應的功能。使用集成電路前,必須認真識別集成電路的引腳,確認電源、接地端、輸人、輸出、控制端等的引腳號,以免因接錯而損壞器件。
幾種常見的集成電路封裝形式及引腳識別如表2所示。
表2 幾種常見的集成電路封裝形式及引腳識別
集成電路的封裝形式有晶體管式封裝、扁平封裝和直插式封裝。集成電路的引腳排列次序有一定規律,一般是從外殼頂部向下看,從左下角按逆時針方向讀數,其中第一腳附近一般有參考標志,如缺口、凹坑、斜面、色點等。引腳排列的一般順序如下。
①缺口。在集成電路的一端有一半圓形或方形的缺口。
②凹坑、色點或金屬片。在集成電路一角有凹坑、色點或金屬片。
③斜面、切角。在集成電路一角或散熱片上有斜面切角。
④無識別標記。在整個集成電路上無任何識別標記,一般可將集成電路型號面對自己,正視型號,從左下向右逆時針依次為1、2、3……
⑤有反向標志“R”的集成電路。某些集成電路型號末尾標有“R”字樣,如HA××××A、HA××××AR。若其型號后綴中有一字母R,則表明其引腳順序為自右向左反向排列。例如,MS115P與M5115PR、HA1339A與HA1339B、HA1366W與HA1366WR等,前者其引腳排列順序自左向右為正向排列,后者其引腳排列順序則自右向左為反向排列。
以上兩種集成電路的電氣性能一樣,只是引腳互相相反。
⑥金屬圓殼形。此類集成電路的引腳,不同廠家有不同的排列順序,使用前應查閱有關資料。
⑦三端集成穩壓器。一般都無識別標記,各種集成電路有各種不同的引腳。
pcb的芯片封裝是什么啊?
問題不清楚啊,PCB是印制電路板,芯片封裝是指的集成電路封裝,一般集成電路封裝作為元件將組裝在PCB上形成系統.
什么是cpu的封裝?
所謂“封裝技術”是一種將集成電路用絕緣的塑料或陶瓷材料打包的技術。以CPU為例,我們實際看到的體積和外觀并不是真正的CPU內核的大小和面貌,而是CPU內核等元件經過封裝后的產品。
封裝對于芯片來說是必須的,也是至關重要的。因為芯片必須與外界隔離,以防止空氣中的雜質對芯片電路的腐蝕而造成電氣性能下降。另一方面,封裝后的芯片也更便于安裝和運輸。由于封裝技術的好壞還直接影響到芯片自身性能的發揮和與之連接的PCB(印制電路板)的設計和制造,因此它是至關重要的。封裝也可以說是指安裝半導體集成電路芯片用的外殼,它不僅起著安放、固定、密封、保護芯片和增強導熱性能的作用,而且還是溝通芯片內部世界與外部電路的橋梁——芯片上的接點用導線連接到封裝外殼的引腳上,這些引腳又通過印刷電路板上的導線與其他器件建立連接。因此,對于很多集成電路產品而言,封裝技術都是非常關鍵的一環。
目前采用的CPU封裝多是用絕緣的塑料或陶瓷材料包裝起來,能起著密封和提高芯片電熱性能的作用。由于現在處理器芯片的內頻越來越高,功能越來越強,引腳數越來越多,封裝的外形也不斷在改變。封裝時主要考慮的因素:
芯片面積與封裝面積之比為提高封裝效率,盡量接近1:1
引腳要盡量短以減少延遲,引腳間的距離盡量遠,以保證互不干擾,提高性能
基于散熱的要求,封裝越薄越好
作為計算機的重要組成部分,CPU的性能直接影響計算機的整體性能。而CPU制造工藝的最后一步也是最關鍵一步就是CPU的封裝技術,采用不同封裝技術的CPU,在性能上存在較大差距。只有高品質的封裝技術才能生產出完美的CPU產品。
CPU芯片的主要封裝技術:
DIP技術
QFP技術
PFP技術
PGA技術
BGA技術
目前較為常見的封裝形式:
OPGA封裝
mPGA封裝
CPGA封裝
FC-PGA封裝
FC-PGA2封裝
OOI 封裝
PPGA封裝
S.E.C.C.封裝
S.E.C.C.2 封裝
S.E.P.封裝
PLGA封裝
CuPGA封裝
各類封裝詳細解釋:
DIP封裝
DIP封裝(Dual In-line Package),也叫雙列直插式封裝技術,指采用雙列直插形式封裝的集成電路芯片,絕大多數中小規模集成電路均采用這種封裝形式,其引腳數一般不超過 100。DIP封裝的CPU芯片有兩排引腳,需要插入到具有DIP結構的芯片插座上。當然,也可以直接插在有相同焊孔數和幾何排列的電路板上進行焊接。 DIP封裝的芯片在從芯片插座上插拔時應特別小心,以免損壞管腳。DIP封裝結構形式有:多層陶瓷雙列直插式DIP,單層陶瓷雙列直插式DIP,引線框架式DIP(含玻璃陶瓷封接式,塑料包封結構式,陶瓷低熔玻璃封裝式)等。
DIP封裝具有以下特點:
1.適合在PCB(印刷電路板)上穿孔焊接,操作方便。
2.芯片面積與封裝面積之間的比值較大,故體積也較大。
最早的4004、8008、8086、8088等CPU都采用了DIP封裝,通過其上的兩排引腳可插到主板上的插槽或焊接在主板上。
QFP封裝
這種技術的中文含義叫方型扁平式封裝技術(Plastic Quad Flat Pockage),該技術實現的CPU芯片引腳之間距離很小,管腳很細,一般大規模或超大規模集成電路采用這種封裝形式,其引腳數一般都在100以上。該技術封裝CPU時操作方便,可靠性高;而且其封裝外形尺寸較小,寄生參數減小,適合高頻應用;該技術主要適合用SMT表面安裝技術在PCB上安裝布線。
QFP封裝
半導體ic封裝具體詳細介紹下,謝謝!大神出來吧
1、 SOP/SOIC封裝
SOP是英文Small Outline Package 的縮寫,即小外形封裝。SOP封裝技術由1968~1969年菲利浦公司開發成功,以后逐漸派生出SOJ(J型引腳小外形封裝)、TSOP(薄小外形封裝)、VSOP(甚小外形封裝)、SSOP(縮小型SOP)、TSSOP(薄的縮小型SOP)及SOT(小外形晶體管)、SOIC(小外形集成電路)等。
2、 DIP封裝
DIP是英文 Double In-line Package的縮寫,即雙列直插式封裝。插裝型封裝之一,引腳從封裝兩側引出,封裝材料有塑料和陶瓷兩種。DIP是最普及的插裝型封裝,應用范圍包括標準邏輯IC,存貯器LSI,微機電路等。
< 1 >
3、 PLCC封裝
PLCC是英文Plastic Leaded Chip Carrier 的縮寫,即塑封J引線芯片封裝。PLCC封裝方式,外形呈正方形,32腳封裝,四周都有管腳,外形尺寸比DIP封裝小得多。PLCC封裝適合用SMT表面安裝技術在PCB上安裝布線,具有外形尺寸小、可靠性高的優點。
4、 TQFP封裝
TQFP是英文thin quad flat package的縮寫,即薄塑封四角扁平封裝。四邊扁平封裝(TQFP)工藝能有效利用空間,從而降低對印刷電路板空間大小的要求。由于縮小了高度和體積,這種封裝工藝非常適合對空間要求較高的應用,如 PCMCIA 卡和網絡器件。幾乎所有ALTERA的CPLD/FPGA都有 TQFP 封裝。
5、 PQFP封裝
PQFP是英文Plastic Quad Flat Package的縮寫,即塑封四角扁平封裝。PQFP封裝的芯片引腳之間距離很小,管腳很細,一般大規模或超大規模集成電路采用這種封裝形式,其引腳數一般都在100以上。
6、 TSOP封裝
TSOP是英文Thin Small Outline Package的縮寫,即薄型小尺寸封裝。TSOP內存封裝技術的一個典型特征就是在封裝芯片的周圍做出引腳, TSOP適合用SMT技術(表面安裝技術)在PCB(印制電路板)上安裝布線。TSOP封裝外形尺寸時,寄生參數(電流大幅度變化時,引起輸出電壓擾動) 減小,適合高頻應用,操作比較方便,可靠性也比較高。
7、 BGA封裝
BGA是英文Ball Grid Array Package的縮寫,即球柵陣列封裝。20世紀90年代隨著技術的進步,芯片集成度不斷提高,I/O引腳數急劇增加,功耗也隨之增大,對集成電路封裝的要求也更加嚴格。為了滿足發展的需要,BGA封裝開始被應用于生產。
采用BGA技術封裝的內存,可以使內存在體積不變的情況下內存容量提高兩到三倍,BGA與TSOP相比,具有更小的體積,更好的散熱性能和電性能。BGA封裝技術使每平方英寸的存儲量有了很大提升,采用BGA封裝技術的內存產品在相同容量下,體積只有TSOP封裝的三分之一;另外,與傳統TSOP封裝方式相比,BGA封裝方式有更加快速和有效的散熱途徑。
BGA封裝的I/O端子以圓形或柱狀焊點按陣列形式分布在封裝下面,BGA技術的優點是I/O引腳數雖然增加了,但引腳間距并沒有減小反而增加了,從而提高了組裝成品率;雖然它的功耗增加,但BGA能用可控塌陷芯片法焊接,從而可以改善它的電熱性能;厚度和重量都較以前的封裝技術有所減少;寄生參數減小,信號傳輸延遲小,使用頻率大大提高;組裝可用共面焊接,可靠性高。
說到BGA封裝就不能不提Kingmax公司的專利TinyBGA技術,TinyBGA英文全稱為Tiny Ball Grid Array(小型球柵陣列封裝),屬于是BGA封裝技術的一個分支。是Kingmax公司于1998年8月開發成功的,其芯片面積與封裝面積之比不小于1:1.14,可以使內存在體積不變的情況下內存容量提高2~3倍,與TSOP封裝產品相比,其具有更小的體積、更好的散熱性能和電性能。
采用TinyBGA封裝技術的內存產品在相同容量情況下體積只有TSOP封裝的1/3。TSOP封裝內存的引腳是由芯片四周引出的,而TinyBGA則是由芯片中心方向引
芯片封裝,急!!!!!!!!!!!!
芯片封裝技術就是將內存芯片包裹起來,以避免芯片與外界接觸,防止外界對芯片的損害的一種工藝技術。空氣中的雜質和不良氣體,乃至水蒸氣都會腐蝕芯片上的精密電路,進而造成電學性能下降。不同的封裝技術在制造工序和工藝方面差異很大,封裝后對內存芯片自身性能的發揮也起到至關重要的作用。 隨著光電、微電制造工藝技術的飛速發展,電子產品始終在朝著更小、更輕、更便宜的方向發展,因此芯片元件的封裝形式也不斷得到改進。芯片的封裝技術多種多樣,有DIP、POFP、TSOP、BGA、QFP、CSP等等,種類不下三十種,經歷了從DIP、TSOP到BGA的發展歷程。芯片的封裝技術已經歷了幾代的變革,性能日益先進,芯片面積與封裝面積之比越來越接近,適用頻率越來越高,耐溫性能越來越好,以及引腳數增多,引腳間距減小,重量減小,可靠性提高,使用更加方便。DIP封裝 TSOP封裝 BGA封裝 CSP封裝。