太陽能電池板如何發電
將太陽能電池板置于太陽光下,即可發電,輸出是直流的. 可以用此直流電給蓄電池充電,儲存起來,需要時給負載供電就好了
太陽能板能發多少電一天
太陽能板一天能發多少電和太陽能板的發電效率,面積,日照時間,日照強度有關。
太陽能板也叫太陽能電池組件。單體的太陽電池多半不能直接做電源使用。必須將若干單體電池串、并聯連接和嚴密封裝成組件,即太陽能板使用。
構成太陽能板的太陽能電池可由不同光伏材料制成。當前晶體硅材料,包括多晶硅和單晶硅,是最主要的光伏材料。其中單晶硅太陽能板的光電轉換效率為15%左右,最高的到24%,轉換效率很高;多晶硅太陽能板的制作工藝與單晶硅太陽能板差不多,光電轉換效率只有約12%左右最高約15%,但造價很低,整體性價比目前高于單晶硅太陽能板。另外還有非晶硅太陽電板,多元化合物太陽能板等。各種太陽能板中效率最高的約有40%。
太陽能板的發電量和發電效率,面積大小,日光強度(天氣),光照時間(季節)有關。在實際運用中還受到儲能設備(電池)的充放電效率,電能轉換(變成電網供電規格)效率的影響………。
在工程上(如造太陽能環保建筑)一般按照每天日照 6小時,電池板發電功率每平方100W 估算。即:0.6千瓦/天;但實際上夏天日照最強時的瞬時發電量可達1千瓦/小時,和估算的平均值相差10倍。
太陽能板是怎么發電的?
太陽能的光子為電池板表面的自由電子提供能量,大量自由電子形成短路電流,然后由電池表面的銀鋁柵線把短路電流收集起來.就發電了.嘿嘿 說的太簡單模糊了 見諒啊
太陽能電池板的發電原理是怎樣的?
太陽電池是一種可以將能量轉換的光電元件,其基本構造是運用P型與N型半導體接合而成的。半導體最基本的材料是“硅”,它是不導電的,但如果在半導體中摻入不同的雜質,就可以做成P型與N型半導體,再利用P型半導體有個電洞,與N型半導體多了一個自由電子的電位差來產生電流,所以當太陽光照射時,光能將硅原子中的電子激發出來,而產生電子和電洞的對流,這些電子和電洞均會受到內建電位的影響,分別被N型及P型半導體吸引,而聚集在兩端。此時外部如果用電極連接起來,形成一個回路,這就是太陽電池發電的原理。簡單的說,太陽光電的發電原理,是利用太陽電池吸收0.4μm~1.1μm波長(針對硅晶)的太陽光,將光能直接轉變成電能輸出的一種發電方式。由于太陽電池產生的電是直流電,因此若需提供電力給家電用品或各式電器則需加裝直/交流轉換器,換成交流電,才能供電至家庭用電或工業用電。
太陽能電池板的發電原理是什么??
太陽能電池板是由太陽能電池片發電的,光生伏打照應,將太陽能轉換成電能,太陽能電池板發的電是直流電.主要由電池片內部的PN結來形成電勢差,使光剩載流子定向運動,即產生電流.
太陽能電池板發電的原理。
光生伏特效應簡稱為光伏效應,指光照使不均勻半導體或半導體與金屬組合的不同部位之間產生電位差的現象。
產生這種電位差的機理有好幾種,主要的一種是由于阻擋層的存在。以下以P-N結為例說明。
熱平衡態下的P-N結
P-N結的形成:
同質結可用一塊半導體經摻雜形成P區和N區。由于雜質的激活能量ΔE很小,在室溫下雜質差不多都電離成受主離子NA-和施主離子ND+。在PN區交界面處因存在載流子的濃度差,故彼此要向對方擴散。設想在結形成的一瞬間,在N區的電子為多子,在P區的電子為少子,使電子由N區流入P區,電子與空穴相遇又要發生復合,這樣在原來是N區的結面附近電子變得很少,剩下未經中和的施主離子ND+形成正的空間電荷。同樣,空穴由P區擴散到N區后,由不能運動的受主離子NA-形成負的空間電荷。在P區與N區界面兩側產生不能移動的離子區(也稱耗盡區、空間電荷區、阻擋層),于是出現空間電偶層,形成內電場(稱內建電場)此電場對兩區多子的擴散有抵制作用,而對少子的漂移有幫助作用,直到擴散流等于漂移流時達到平衡,在界面兩側建立起穩定的內建電場。
太陽能電池板的發電原理
太陽電池是一種對光有響應并能將光能轉換成電力的器件。能產生光伏效應的材料有許多種,如:單晶硅,多晶硅, 非晶硅,砷化鎵,硒銦銅等。它們的發電原理基本相同,現以晶體硅為例描述光發電過程。 P型晶體硅經過摻雜磷可得N型硅,形成P-N結。
當光線照射太陽電池表面時,一部分光子被硅材料吸收;光子的能量傳遞給了硅原子,使電子發生了躍遷,成為自由電子在P-N結兩側集聚形成了電位差,當外部接通電路時,在該電壓的作用下,將會有電流流過外部電路產生一定的輸出功率。這個過程的的實質是:光子能量轉換成電能的過程。
一、太陽能發電方式太陽能發電有兩種方式,一種是光—熱—電轉換方式,另一種是光—電直接轉換方式。
(1) 光—熱—電轉換方式通過利用太陽輻射產生的熱能發電,一般是由太陽能集熱器將所吸收的熱能轉換成工質的蒸氣,再驅動汽輪機發電。前一個過程是光—熱轉換過程;后一個過程是熱—電轉換過程,與普通的火力發電一樣。太陽能熱發電的缺點是效率很低而成本很高,估計它的投資至少要比普通火電站貴5~10倍。一座1000MW的太陽能熱電站需要投資20~25億美元,平均1kW的投資為2000~2500美元。因此,適用小規模特殊的場合,而大規模利用在經濟上很不合算,還不能與普通的火電站或核電站相競爭。
(2) 光—電直接轉換方式該方式是利用光電效應,將太陽輻射能直接轉換成電能,光—電轉換的基本裝置就是太陽能電池。太陽能電池是一種由于光生伏特效應而將太陽光能直接轉化為電能的器件,是一個半導體光電二極管,當太陽光照到光電二極管上時,光電二極管就會把太陽的光能變成電能,產生電流。當許多個電池串聯或并聯起來就可以成為有比較大的輸出功率的太陽能電池方陣了。太陽能電池是一種大有前途的新型電源,具有永久性、清潔性和靈活性三大優點.太陽能電池壽命長,只要太陽存在,太陽能電池就可以一次投資而長期使用;與火力發電、核能發電相比,太陽能電池不會引起環境污染;太陽能電池可以大中小并舉,大到百萬千瓦的中型電站,小到只供一戶用的太陽能電池組,這是其它電源無法比擬的 太陽能交流發電系統是由太陽電池板、充電控制器、逆變器和蓄電池共同組成;太陽能直流發電系統則不包括逆變器。為了使太陽能發電系統能為負載提供足夠的電源,就要根據用電器的功率,合理選擇各部件。下面以100W輸出功率,每天使用6個小時為例,介紹一下計算方法:
1.首先應計算出每天消耗的瓦時數(包括逆變器的損耗):若逆變器的轉換效率為90%,則當輸出功率為100W時,則實際需要輸出功率應為100W/90%=111W;若按每天使用5小時,則輸出功率為111W*5小時=555Wh。
2.計算太陽能電池板:按每日有效日照時間為6小時計算,再考慮到充電效率和充電過程中的損耗,太陽能電池板的輸出功率應為555Wh/6h/70%=130W。其中70%是充電過程中,太陽能電池板的實際使用功率。 單晶硅太陽能的光電轉換效率最高的達到24%,這是目前所有種類的太陽能電池中光電轉換效率最高的。但是單晶硅太陽能電池的制作成本很大,以致于它還不能被大量廣泛和普遍地使用。多晶硅太陽能電池從制作成本上來講,比單晶硅太陽能電池要便宜一些,但是多晶硅太陽能電池的光電轉換效率則要降低不少,此外,多晶硅太陽能電池的使用壽命也要比單晶硅太陽能電池短。因此,從性能價格比來講,單晶硅太陽能電池還略好。
研究者發現有一些化合物半導體材料適于作太陽能光電轉化薄膜。例如CdS,CdTe;Ⅲ-V化合物半導體:GaAs,AIPInP等;用這些半導體制作的薄膜太陽能電池表現出很好光電轉化效率。具有梯度能帶間隙多元的半導體材料,可以擴大太陽能吸收光譜范圍,進而提高光電轉化效率。使薄膜太陽能電池大量實際的應用呈現廣闊的前景。在這些多元的半導體材料中Cu(In,Ga)Se2是一種性能優良太陽光吸收材料。以它為基礎可以設計出光電轉換效率比硅明顯地高的薄膜太陽能電池,可以達到的光電轉化率為18%.
太陽能電池板發電原理是怎樣的?
太陽能發電原理
太陽能發電系統由太陽能電池組、太陽能控制器、蓄電池(組)組成。如輸出電源為交流220V或 110V,還需要配置逆變器。各部分的作用為:
(一)太陽能電池板:太陽能電池板是太陽能發電系統中的核心部分,也是太陽能發電系統中價值最高的部分。其作用是將太陽的輻射能力轉換為電能,或送往蓄電池中存儲起來,或推動負載工作。太陽能電池板的質量和成本將直接決定整個系統的質量和成本。
(二)太陽能控制器:太陽能控制器的作用是控制整個系統的工作狀態,并對蓄電池起到過充電保護、過放電保護的作用。在溫差較大的地方,合格的控制器還應具備溫度補償的功能。其他附加功能如光控開關、時控開關都應當是控制器的可選項。
(三)蓄電池:一般為鉛酸電池,小微型系統中,也可用鎳氫電池、鎳鎘電池或鋰電池。其作用是在有光照時將太陽能電池板所發出的電能儲存起來,到需要的時候再釋放出來。
(四)逆變器:在很多場合,都需要提供220VAC、110VAC的交流電源。由于太陽能的直接輸出一般都是12VDC、24VDC、48VDC。為能向220VAC的電器提供電能,需要將太陽能發電系統所發出的直流電能轉換成交流電能,因此需要使用DC-AC逆變器。在某些場合,需要使用多種電壓的負載時,也要用到DC-DC逆變器,如將24VDC的電能轉換成5VDC的電能(注意,不是簡單的降壓)。
太陽能發電系統的設計需要考慮如下因素:
Q1、 太陽能發電系統在哪里使用?該地日光輻射情況如何?
Q2、 系統的負載功率多大?
Q3、 系統的輸出電壓是多少,直流還是交流?
Q4、 系統每天需要工作多少小時?
Q5、 如遇到沒有日光照射的陰雨天氣,系統需連續供電多少天?
Q6、 負載的情況,純電阻性、電容性還是電感性,啟動電流多大?
Q7、 系統需求的數量?
太陽能板發電原理?
光伏發電:是根據光生伏特效應原理,利用太陽電池將太陽光能直接轉化為電能.不論是獨立使用還是并網發電,光伏發電系統主要由太陽電池板(組件)、控制器和逆變器三大部分組成,它們主要由電子元器件構成,不涉及機械部件.光伏發電是利用半導體界面的光生伏特效應而將光能直接轉變為電能的一種技術.這種技術的關鍵元件是太陽能電池.太陽能電池經過串聯后進行封裝保護可形成大面積的太陽電池組件,再配合上功率控制器等部件就形成了光伏發電裝置.光伏就是太陽能哦!
一般市面上的太陽能電池板是什么發電方式
市面上的太陽板一般是硅太陽能電池板,利用半導體的光生伏特效應發電